ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Счетчики газа СГ

Назначение средства измерений

Счетчики газа СГ (в дальнейшем – счетчики) предназначены для измерений объема плавно меняющегося потока осушенного и очищенного от механических примесей неагрессивного природного газа по ГОСТ 5542-87, попутного газа с парциальным давлением сероводорода не более 0,01 МПа и других неагрессивных газов (в том числе воздуха, азота) плотностью не менее 0,67 кг/м 3 , кроме кислорода.

Описание средства измерений

Конструктивно счетчик состоит из двух основных узлов: проточной части, в которой находится турбинка, и счетной головки, в которой размещены механический редуктор и интегрирующее устройство. Счетная головка имеет возможность разворачиваться вокруг вертикальной оси для обеспечения удобства считывания показаний счетчика.

Принцип действия счетчиков основан на пропорциональности угловой скорости вращения турбинки, помещенной в поток газа.

Число оборотов турбинки посредством механического редуктора передается на интегрирующее отсчетное устройство, показывающее объемное количество газа, прошедшего через счетчик за время измерения.

В зависимости от конструкции счетчик имеет несколько исполнений:

- "МТ" модернизированный счетный редуктор;
- "Р" расширенный диапазон измерений.

Особенность конструкции счетчика с индексом "МТ" – наличие выходного разъема, сопротивление между контактами которого изменяется скачкообразно от ¥ до заданного значения и обратно за время прохождения через счетчик объема, равного единице младшего разряда счетного устройства (низкочастотный выход).

При монтаже счетчиков выполняют прямые участки 5 Ду до и 3 Ду после счетчика.

Для счетчика "Р" при слабых возмущениях 2Ду до и 1 Ду после счетчика. При наличии стабилизаторов потока газа (СПГ) прямые участки до СПГ и после счетчика не требуются.

В зависимости от максимального значения давления измеряемой среды счетчики выпускается в двух исполнениях:

- СГ 16 для давления 1,6 МПа;
- СГ 75 для давления 7,5 МПа.

Внешний вид счетчиков и места пломбирования приведены на рисунке 1.

Архангельск (8182)63-90-72 Астана (7172)727-132 Астрахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Брянск (4823)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Нжевск (3412)26-03-58 Нркутск (395)279-98-46 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Краснодар (861)203-40-90 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Линецк (4742)52-20-81 Киргизия (996)312-96-26-47 Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новосибирск (383)22-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16

Казахстан (772)734-952-31

Пермь (342)205-81-47
Ростов-на-Дону (863)308-18-15
Рязань (4912)46-61-64
Самара (846)206-03-16
Санкт-Петербург (812)309-46-40
Саратов (845)249-38-78
Севастополь (8692)22-31-93
Симферополь (3652)67-13-56
Смоленск (4812)29-41-54
Сочи (862)225-72-31
Ставрополь (8652)20-65-13
Таджикистан (992)427-82-92-69

Сургут (3462)77-98-35 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93

- 1- Пломба ОТК;
- 2- Пломба ЦСМ Рисунок 1

Метрологические и технические характеристики

1. Диапазоны расходов и диаметры условного проходного сечения для различных исполнений счетчика газа приведены в таблице 1.

Таблица 1

Обозначение	Расход, м ³ /ч		Ду,
исполнения	наибольший	наименьший	MM
	Qmax	Qmin	
CΓ16MT – 65-P	65	6,5	
CΓ16MT – 100	100	10	50
CΓ16MT – 100-P			
CΓ16MT – 100-P-1		8	
CΓ16MT – 160	160	16	80
CΓ75MT – 160			
CΓ16MT – 160 – P – 2		8	
$C\Gamma 75MT - 160 - P - 2$			
CΓ16MT – 200			
CΓ75MT – 200	200	10	
CΓ16MT – 250	250	12,5	
CΓ75MT – 250			
CΓ16MT – 250 – P – 2		12,5	
CΓ16MT – 250 – P – 3		10	

Обозначение	Обозначение Расход, м ³ /ч		Ду,	
исполнения	наибольший наименьший Qmax Qmin		ММ	
СГ75MT – 250 – P – 2	250	12,5	80	
CΓ75MT – 250 – P – 3		10		
CΓ16MT – 400,				
СГ75МТ – 400	400	20	100	
CΓ16MT – 400 – P –2		20		
СГ16МТ – 400 – P –3 СГ75МТ – 400 – P –2	<u>-</u>	16 20		
$C\Gamma 75MT - 400 - P - 2$ $C\Gamma 75MT - 400 - P - 3$	_	16		
CΓ16MT – 650	650	32,5	150 или 100	
CΓ75MT – 650		5 = ,0	100 11111 100	
СГ16MT – 650 – P –2		32,5		
СГ16MT – 650 – Р –3		<mark>26</mark>		
CΓ75MT – 650 – P –2		32,5		
СГ75МТ – 650 – Р –3		26		
CΓ16MT – 800,	800	40	150	
СГ75MT – 800				
CΓ16MT – 800 – P – 2	_	40		
CΓ16MT – 800 – P – 3		26,6		
CΓ75MT – 800 – P – 2	_	40		
СГ75МТ – 800 – Р – 3 СГ16МТ – 1000,	1000	26,6 50	150	
$C\Gamma$ 10WT = 1000, $C\Gamma$ 75MT = 1000	1000	30	130	
CΓ16MT – 1000 – P –2		50		
CΓ16MT – 1000 – P –3		32,5		
CΓ75MT – 1000 – P –2	1	50		
СГ75МТ – 1000 – Р –3		32,5		
CΓ16 MT – 1600,	1600	80	200	
СГ75 MT – 1600				
CΓ16MT – 1600 – P –2		80		
CΓ16MT – 1600 – P –3	-	50		
СГ75MT – 1600 – Р –2		80		
СГ75MT – 1600 – Р –3		50		
CΓ16MT – 2500, CΓ75MT – 2500	2500	125		
CΓ16MT – 2500 – P –2	2500	125	200	
CΓ16MT – 2500 – P –3	- 2500	80	200	
CΓ75MT – 2500 – P – 2	1	125		
CΓ75MT – 2500 – P –3	-	80		
CΓ16MT – 4000,	4000	200		
CΓ75MT – 4000				
CΓ16MT – 4000 – P – 2	1	200		
CΓ16MT – 4000 – P – 3	1	130		
CΓ75MT – 4000 – P – 2		200		

Обозначение	Расход, м ³ /ч		Ду,
исполнения	наибольший	наименьший	MM
	Qmax	Qmin	
$C\Gamma 75MT - 4000 - P - 3$	4000	130	

Диапазон измерений 1:10 для Ду 50; и 1:20 для остальных Ду.

Счетчики газа с диапазоном измерения 1:12,5 (СГ16МТ-100-Р-1), 1:25 и 1:30 выпускаются по заказу.

Значение потери давления при наибольшем расходе: для $C\Gamma$ «МТ» не более 1600 Па (160 мм вод.ст.), для $C\Gamma$ "Р" - не более 1800 Па (180 мм вод.ст.).

Емкость счетного механизма 10⁸ м³

Порог чувствительности не более:

- $0,033 Q_{\text{max}}$ для Д_у 50;
- 0,02 Q_{max} для остальных Д_v

Пределы допускаемой основной относительной погрешности счетчика:

- с диапазоном расходов 1:10:
- \pm 1 % в диапазоне расходов от Qmax до 0,2 Qmax;
- \pm 2 % в диапазоне расходов менее 0,2 Qmax до 0,1 Qmax.
- с диапазоном расходов 1:12,5:
- \pm 1 % в диапазоне расходов от Qmax до 0,1 Qmax;
- $\pm\,2\,\%$ в диапазоне расходов менее 0,1 Qmax до 0,08 Qmax.
- с диапазоном расходов 1:20:
- \pm 1 % в диапазоне расходов от Qmax до 0,2 Qmax;
- \pm 2 % в диапазоне расходов менее 0,2 Qmax до 0,05 Qmax.
- с диапазоном расходов 1:25:
- \pm 1 % в диапазоне расходов от Qmax до 0,05 Qmax;
- ± 2 % в диапазоне расходов менее 0,05 Qmax до 0,04 Qmax.
- с диапазоном расходов 1:30:
- \pm 1 % в диапазоне расходов от Qmax до 0,05 Qmax;
- \pm 2 % в диапазоне расходов менее 0,05 Qmax до 0,03 Qmax.

Температура измеряемого газа от минус 20 до плюс 50 °C.

Рабочие условия эксплуатации от минус 40 до плюс 50 °C. Для счетчиков СГ "Р" - от минус 40 до плюс 70 °C.

Вид климатического исполнения УХЛ3 по ГОСТ 15150-69, но для эксплуатации при температуре от минус 40 до плюс 50° С, для счетчика "P" - от минус 40 до плюс 70° С.

Счетчики могут устанавливаться во взрывоопасных зонах, в которых возможно образование взрывоопасных смесей паров и газов с воздухом категории IIA и IIB групп Т1, Т2, Т3, Т4 по ГОСТ 30852.5-2002.

Счетчик предназначен для непрерывного режима работы.

Средняя наработка на отказ не менее 100000 ч.

Средний срок службы до списания не менее 12 лет.

Знак утверждения типа

наносится типографским способом на титульных листах паспорта и руководства по эксплуатации, и фотохимическим способом на табличке счетчика.

Комплектность средства измерений

Наименование		Примечание
1 Счетчик газа СГ		По спецификации заказа
2 Датчик импульсный низкочастотный	1	
ЛГФИ.301568.017		
3 Одиночный комплект ЗИП ЛГФИ.306593.001		Кроме СГ16М-100,
		СГ16МТ-100, СГ16М-100-Р
4 Комплекты монтажных частей:		В соответствии с исполне-
ЛГФИ.407221.020 Д1 (407221.001 Д1;	1	нием счетчика
407221.010 Д1; 407221.026 Д1)		
5 Стабилизатор потока газа СПГ		В соответствии с исполне-
ЛГФИ.302133.024	1	нием
6 Руководство по эксплуатации	1	В соответствии с исполне-
ЛГФИ.407221.001 РЭ (407221.026 РЭ;		нием
407221.046 PЭ)		
7 Паспорт ЛГФИ.407221.001 ПС (407221.002 ПС;	1	В соответствии с исполне-
407221.026 ПС; 407221.043 ПС; 407221.046 ПС;		нием счетчика
407221.049 ΠC)		
8 Методика поверки ЛГФИ.407221.001 МИ		Поставляется по заказу

Поверка

проводится в соответствии с методикой "ГСИ. Счетчики газа СГ. Методика поверки", ЛГФИ.407221.001МИ, утвержденной ФГУП "ВНИИМС" в июле 2014 г.

Основное поверочное оборудование - установка поверочная расходомерная для счетчиков газа УПСГ с погрешностью ± 0.35 % (Госреестр №14131-05).

Сведения о методиках (методах) измерений

изложены в руководстве по эксплуатации ЛГФИ.407221.001 РЭ.

Нормативные и технические документы, устанавливающие требования к счетчикам газа CГ:

- 1. ГОСТ Р 8.618-2006 ГСИ. Государственная поверочная схема для средств измерений объемного и массового расходов газа.
- 2. ГОСТ 28724-90 Счетчики газа скоростные. Общие технические требования и методы испытаний.
- 3. Технические условия ТУ 4213-001-07513518-02 (ЛГФИ.407221.001 ТУ).

Рекомендации по области применения в сфере государственного регулирования обеспечения единства измерений — выполнение торговых и товарообменных операций.

Архангельск (8182)63-90-72 Астана (7172)727-132 Астарахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (8142)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Иркутск (395)279-98-46 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Красноярс (81)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Липецк (4742)52-20-81 Киргизия (996)312-96-26-47 Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Казахстан (772)734-952-31

Пермь (342)205-81-47
Ростов-на-Дону (863)308-18-15
Рязань (4912)46-61-64
Самара (846)206-03-16
Санкт-Петербург (812)309-46-40
Саратов (845)249-38-78
Севастополь (8692)22-31-93
Симферополь (3652)67-13-56
Смоленск (4812)29-41-54
Сочи (862)225-72-31
Ставрополь (8652)20-65-13
Таджикистан (992)427-82-92-69

Сургут (3462)77-98-35 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновек (8422)24-23-59 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93

https://apz.nt-rt.ru/ || apz@nt-rt.ru